Biostatistiek versus machine learning: van traditionele predictiemodellen naar geautomatiseerde medische analyse
نویسندگان
چکیده
Biostatistics versus machine learning: from traditional prediction models to automated medical analysis Machine learning is increasingly applied data develop clinical models. This paper discusses the application of in comparison with biostatistical methods. well-suited for structured datasets. The selection variables a model primarily knowledge-driven. A similar approach possible learning. But addition, allows unstructured datasets, which are e.g. derived imaging and written texts patient records. In contrast biostatistics, mainly data-driven. Complex able detect nonlinear patterns interactions data. However, this requires large datasets prevent overfitting. For both external validation developed comparable setting required evaluate model’s reproducibility. not easily implemented practice, since they recognized as black boxes (i.e. non-intuitive). purpose, research initiatives ongoing within field explainable artificial intelligence. Finally, development decision support systems discussed.
منابع مشابه
Structured Machine Learning for Mapping Natural Language to Spatial Ontologies (Gestructureerd machinaal leren voor het omzetten van natuurlijke taal naar ruimtelijke ontologieën)
Natural language understanding is one of the fundamental goals of artificial intelligence. An essential function of natural language is to talk about the location, and translocation of objects in space. Understanding spatial language is important in many applications such as geographical information systems, human computer interaction, the provision of navigational instructions to robots, visua...
متن کاملMental illness in Culture, Culture in Mental illness An anthropological view from South Africa
De auteur bespreekt de relatie tussen cultuur en geestesziekte. Hij vraagt aandacht voor het probleem van universalisme versus particularisme waar antropologenmee geconfronteerd worden bij interdisciplinaire studies van psychiatrie. Het thema is misschien niet nieuw, maar de beschouwing komt voort uit de reacties van Zuid-Afrikaanse postgraduate studenten in de medische antropologie die deelnam...
متن کاملAppendix : Machine Learning Bias Versus Statistical Bias
is if and 0 if. This high variance may help to explain why there is selection pressure for weak (machine learning) bias when the (machine learning) bias correctness is low. The reason that statisticians are interested in (statistical) bias and variance is that squared error is equal to the sum of squared (statistical) bias and variance. Therefore minimal (statistical) bias and minimal variance ...
متن کاملAppendix : Machine Learning Bias Versus Statistical Bias
is if and 0 if. This high variance may help to explain why there is selection pressure for weak (machine learning) bias when the (machine learning) bias correctness is low. The reason that statisticians are interested in (statistical) bias and variance is that squared error is equal to the sum of squared (statistical) bias and variance. Therefore minimal (statistical) bias and minimal variance ...
متن کاملAppendix : Machine Learning Bias Versus Statistical Bias
is if and 0 if. This high variance may help to explain why there is selection pressure for weak (machine learning) bias when the (machine learning) bias correctness is low. The reason that statisticians are interested in (statistical) bias and variance is that squared error is equal to the sum of squared (statistical) bias and variance. Therefore minimal (statistical) bias and minimal variance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tijdschrift Voor Geneeskunde
سال: 2021
ISSN: ['0371-683X', '1784-9721']
DOI: https://doi.org/10.47671/tvg.77.21.020